[4169] | 1 | WAeUP Data Center |
---|
| 2 | ***************** |
---|
| 3 | |
---|
| 4 | The WAeUP data center cares for managing CSV files and importing then. |
---|
| 5 | |
---|
| 6 | :Test-Layer: unit |
---|
| 7 | |
---|
| 8 | Creating a data center |
---|
| 9 | ====================== |
---|
| 10 | |
---|
| 11 | A data center can be created easily: |
---|
| 12 | |
---|
[4920] | 13 | >>> from waeup.sirp.datacenter import DataCenter |
---|
[4169] | 14 | >>> mydatacenter = DataCenter() |
---|
| 15 | >>> mydatacenter |
---|
[4920] | 16 | <waeup.sirp.datacenter.DataCenter object at 0x...> |
---|
[4169] | 17 | |
---|
| 18 | Each data center has a location in file system where files are stored: |
---|
| 19 | |
---|
| 20 | >>> storagepath = mydatacenter.storage |
---|
| 21 | >>> storagepath |
---|
[4920] | 22 | '/.../waeup/sirp/files' |
---|
[4169] | 23 | |
---|
| 24 | |
---|
[4174] | 25 | Managing the storage path |
---|
| 26 | ------------------------- |
---|
| 27 | |
---|
| 28 | We can set another storage path: |
---|
| 29 | |
---|
| 30 | >>> import os |
---|
| 31 | >>> os.mkdir('newlocation') |
---|
| 32 | >>> newpath = os.path.abspath('newlocation') |
---|
| 33 | >>> mydatacenter.setStoragePath(newpath) |
---|
[4191] | 34 | [] |
---|
[4174] | 35 | |
---|
[4191] | 36 | The result here is a list of filenames, that could not be |
---|
| 37 | copied. Luckily, this list is empty. |
---|
| 38 | |
---|
[4174] | 39 | When we set a new storage path, we can tell to move all files in the |
---|
| 40 | old location to the new one. To see this feature in action, we first |
---|
| 41 | have to put a file into the old location: |
---|
| 42 | |
---|
| 43 | >>> open(os.path.join(newpath, 'myfile.txt'), 'wb').write('hello') |
---|
| 44 | |
---|
| 45 | Now we can set a new location and the file will be copied: |
---|
| 46 | |
---|
| 47 | >>> verynewpath = os.path.abspath('verynewlocation') |
---|
| 48 | >>> os.mkdir(verynewpath) |
---|
| 49 | |
---|
| 50 | >>> mydatacenter.setStoragePath(verynewpath, move=True) |
---|
[4191] | 51 | [] |
---|
| 52 | |
---|
[4174] | 53 | >>> storagepath = mydatacenter.storage |
---|
| 54 | >>> 'myfile.txt' in os.listdir(verynewpath) |
---|
| 55 | True |
---|
| 56 | |
---|
| 57 | We remove the created file to have a clean testing environment for |
---|
| 58 | upcoming examples: |
---|
| 59 | |
---|
| 60 | >>> os.unlink(os.path.join(storagepath, 'myfile.txt')) |
---|
| 61 | |
---|
[4169] | 62 | Uploading files |
---|
| 63 | =============== |
---|
| 64 | |
---|
| 65 | We can get a list of files stored in that location: |
---|
| 66 | |
---|
| 67 | >>> mydatacenter.getFiles() |
---|
| 68 | [] |
---|
| 69 | |
---|
| 70 | Let's put some file in the storage: |
---|
| 71 | |
---|
| 72 | >>> import os |
---|
| 73 | >>> filepath = os.path.join(storagepath, 'data.csv') |
---|
| 74 | >>> open(filepath, 'wb').write('Some Content\n') |
---|
| 75 | |
---|
| 76 | Now we can find a file: |
---|
| 77 | |
---|
| 78 | >>> mydatacenter.getFiles() |
---|
[4920] | 79 | [<waeup.sirp.datacenter.DataCenterFile object at 0x...>] |
---|
[4169] | 80 | |
---|
| 81 | As we can see, the actual file is wrapped by a convenience wrapper, |
---|
| 82 | that enables us to fetch some data about the file. The data returned |
---|
| 83 | is formatted in strings, so that it can easily be put into output |
---|
| 84 | pages: |
---|
| 85 | |
---|
| 86 | >>> datafile = mydatacenter.getFiles()[0] |
---|
| 87 | >>> datafile.getSize() |
---|
| 88 | '13 bytes' |
---|
| 89 | |
---|
| 90 | >>> datafile.getDate() # Nearly current datetime... |
---|
| 91 | '...' |
---|
| 92 | |
---|
| 93 | Clean up: |
---|
| 94 | |
---|
[4174] | 95 | >>> import shutil |
---|
| 96 | >>> shutil.rmtree(newpath) |
---|
| 97 | >>> shutil.rmtree(verynewpath) |
---|
[4169] | 98 | |
---|
| 99 | |
---|
[4897] | 100 | Distributing processed files |
---|
| 101 | ============================ |
---|
| 102 | |
---|
| 103 | When files were processed by a batch processor, we can put the |
---|
| 104 | resulting files into desired destinations. |
---|
| 105 | |
---|
| 106 | We recreate the datacenter root in case it is missing: |
---|
| 107 | |
---|
| 108 | >>> import os |
---|
| 109 | >>> dc_root = mydatacenter.storage |
---|
| 110 | >>> fin_dir = os.path.join(dc_root, 'finished') |
---|
| 111 | >>> unfin_dir = os.path.join(dc_root, 'unfinished') |
---|
| 112 | |
---|
| 113 | >>> def recreate_dc_storage(): |
---|
| 114 | ... if os.path.exists(dc_root): |
---|
| 115 | ... shutil.rmtree(dc_root) |
---|
| 116 | ... os.mkdir(dc_root) |
---|
| 117 | ... mydatacenter.setStoragePath(mydatacenter.storage) |
---|
| 118 | >>> recreate_dc_storage() |
---|
| 119 | |
---|
| 120 | We define a function that creates a set of faked result files: |
---|
| 121 | |
---|
| 122 | >>> import os |
---|
| 123 | >>> import tempfile |
---|
| 124 | >>> def create_fake_results(source_basename, create_pending=True): |
---|
| 125 | ... tmp_dir = tempfile.mkdtemp() |
---|
| 126 | ... src = os.path.join(dc_root, source_basename) |
---|
| 127 | ... pending_src = None |
---|
| 128 | ... if create_pending: |
---|
| 129 | ... pending_src = os.path.join(tmp_dir, 'mypendingsource.csv') |
---|
| 130 | ... finished_src = os.path.join(tmp_dir, 'myfinishedsource.csv') |
---|
| 131 | ... for path in (src, pending_src, finished_src): |
---|
| 132 | ... if path is not None: |
---|
| 133 | ... open(path, 'wb').write('blah') |
---|
| 134 | ... return tmp_dir, src, finished_src, pending_src |
---|
| 135 | |
---|
| 136 | Now we can create the set of result files, that typically come after a |
---|
| 137 | successful processing of a regular source: |
---|
| 138 | |
---|
| 139 | Now we can try to distribute those files. Let's start with a source |
---|
| 140 | file, that was processed successfully: |
---|
| 141 | |
---|
| 142 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 143 | ... 'mysource.csv', create_pending=False) |
---|
| 144 | >>> mydatacenter.distProcessedFiles(True, src, finished_src, |
---|
| 145 | ... pending_src) |
---|
| 146 | >>> sorted(os.listdir(dc_root)) |
---|
| 147 | ['finished', 'logs', 'unfinished'] |
---|
| 148 | |
---|
| 149 | >>> sorted(os.listdir(fin_dir)) |
---|
| 150 | ['mysource.csv', 'mysource.finished.csv'] |
---|
| 151 | |
---|
| 152 | >>> sorted(os.listdir(unfin_dir)) |
---|
| 153 | [] |
---|
| 154 | |
---|
[4907] | 155 | The created dir will be removed for us by the datacenter. This way we |
---|
| 156 | can assured, that less temporary dirs are left hanging around: |
---|
[4897] | 157 | |
---|
[4907] | 158 | >>> os.path.exists(tmp_dir) |
---|
| 159 | False |
---|
| 160 | |
---|
[4897] | 161 | The root dir is empty, while the original file and the file containing |
---|
| 162 | all processed data were moved to'finished/'. |
---|
| 163 | |
---|
| 164 | Now we restart, but this time we fake an erranous action: |
---|
| 165 | |
---|
| 166 | >>> recreate_dc_storage() |
---|
| 167 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 168 | ... 'mysource.csv') |
---|
| 169 | >>> mydatacenter.distProcessedFiles(False, src, finished_src, |
---|
| 170 | ... pending_src) |
---|
| 171 | >>> sorted(os.listdir(dc_root)) |
---|
| 172 | ['finished', 'logs', 'mysource.pending.csv', 'unfinished'] |
---|
| 173 | |
---|
| 174 | >>> sorted(os.listdir(fin_dir)) |
---|
| 175 | ['mysource.finished.csv'] |
---|
| 176 | |
---|
| 177 | >>> sorted(os.listdir(unfin_dir)) |
---|
| 178 | ['mysource.csv'] |
---|
| 179 | |
---|
| 180 | While the original source was moved to the 'unfinished' dir, the |
---|
| 181 | pending file went to the root and the set of already processed items |
---|
| 182 | are stored in finished/. |
---|
| 183 | |
---|
| 184 | We fake processing the pending file and assume that everything went |
---|
| 185 | well this time: |
---|
| 186 | |
---|
| 187 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 188 | ... 'mysource.pending.csv', create_pending=False) |
---|
| 189 | >>> mydatacenter.distProcessedFiles(True, src, finished_src, |
---|
| 190 | ... pending_src) |
---|
| 191 | |
---|
| 192 | >>> sorted(os.listdir(dc_root)) |
---|
| 193 | ['finished', 'logs', 'unfinished'] |
---|
| 194 | |
---|
| 195 | >>> sorted(os.listdir(fin_dir)) |
---|
| 196 | ['mysource.csv', 'mysource.finished.csv'] |
---|
| 197 | |
---|
| 198 | >>> sorted(os.listdir(unfin_dir)) |
---|
| 199 | [] |
---|
| 200 | |
---|
| 201 | The result is the same as in the first case shown above. |
---|
| 202 | |
---|
| 203 | We restart again, but this time we fake several non-working imports in |
---|
| 204 | a row. |
---|
| 205 | |
---|
| 206 | We start with a faulty start-import: |
---|
| 207 | |
---|
| 208 | >>> recreate_dc_storage() |
---|
| 209 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 210 | ... 'mysource.csv') |
---|
| 211 | >>> mydatacenter.distProcessedFiles(False, src, finished_src, |
---|
| 212 | ... pending_src) |
---|
| 213 | |
---|
| 214 | We try to process the pending file, which fails again: |
---|
| 215 | |
---|
| 216 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 217 | ... 'mysource.pending.csv') |
---|
| 218 | >>> mydatacenter.distProcessedFiles(False, src, finished_src, |
---|
| 219 | ... pending_src) |
---|
| 220 | |
---|
| 221 | We try to process the new pending file: |
---|
| 222 | |
---|
| 223 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 224 | ... 'mysource.pending.csv') |
---|
| 225 | >>> mydatacenter.distProcessedFiles(False, src, finished_src, |
---|
| 226 | ... pending_src) |
---|
| 227 | |
---|
| 228 | >>> sorted(os.listdir(dc_root)) |
---|
| 229 | ['finished', 'logs', 'mysource.pending.csv', 'unfinished'] |
---|
| 230 | |
---|
| 231 | >>> sorted(os.listdir(fin_dir)) |
---|
| 232 | ['mysource.finished.csv'] |
---|
| 233 | |
---|
| 234 | >>> sorted(os.listdir(unfin_dir)) |
---|
| 235 | ['mysource.csv'] |
---|
| 236 | |
---|
| 237 | Finally, we process the pending file and everything works: |
---|
| 238 | |
---|
| 239 | >>> tmp_dir, src, finished_src, pending_src = create_fake_results( |
---|
| 240 | ... 'mysource.pending.csv', create_pending=False) |
---|
| 241 | >>> mydatacenter.distProcessedFiles(True, src, finished_src, |
---|
| 242 | ... pending_src) |
---|
| 243 | |
---|
| 244 | >>> sorted(os.listdir(dc_root)) |
---|
| 245 | ['finished', 'logs', 'unfinished'] |
---|
| 246 | |
---|
| 247 | >>> sorted(os.listdir(fin_dir)) |
---|
| 248 | ['mysource.csv', 'mysource.finished.csv'] |
---|
| 249 | |
---|
| 250 | >>> sorted(os.listdir(unfin_dir)) |
---|
| 251 | [] |
---|
| 252 | |
---|
| 253 | The root dir is empty (contains no input files) and only the files in |
---|
| 254 | finished-subdirectory remain. |
---|
| 255 | |
---|
| 256 | Clean up: |
---|
| 257 | |
---|
| 258 | >>> shutil.rmtree(verynewpath) |
---|
| 259 | |
---|
[4169] | 260 | Handling imports |
---|
| 261 | ================ |
---|
| 262 | |
---|
| 263 | Data centers can find objects ready for CSV imports and associate |
---|
| 264 | appropriate importers with them. |
---|
| 265 | |
---|
[4172] | 266 | Getting importers |
---|
| 267 | ----------------- |
---|
| 268 | |
---|
[4169] | 269 | To do so, data centers look up their parents for the nearest ancestor, |
---|
| 270 | that implements `ICSVDataReceivers` and grab all attributes, that |
---|
| 271 | provide some importer. |
---|
| 272 | |
---|
| 273 | We therefore have to setup a proper scenario first. |
---|
| 274 | |
---|
| 275 | We start by creating a simple thing that is ready for receiving CSV |
---|
| 276 | data: |
---|
| 277 | |
---|
| 278 | >>> class MyCSVReceiver(object): |
---|
| 279 | ... pass |
---|
| 280 | |
---|
| 281 | Then we create a container for such a CSV receiver: |
---|
| 282 | |
---|
| 283 | >>> import grok |
---|
[4920] | 284 | >>> from waeup.sirp.interfaces import ICSVDataReceivers |
---|
| 285 | >>> from waeup.sirp.datacenter import DataCenter |
---|
[4169] | 286 | >>> class SomeContainer(grok.Container): |
---|
| 287 | ... grok.implements(ICSVDataReceivers) |
---|
| 288 | ... def __init__(self): |
---|
| 289 | ... self.some_receiver = MyCSVReceiver() |
---|
| 290 | ... self.other_receiver = MyCSVReceiver() |
---|
| 291 | ... self.datacenter = DataCenter() |
---|
| 292 | |
---|
| 293 | By implementing `ICSVDataReceivers`, a pure marker interface, we |
---|
| 294 | indicate, that we want instances of this class to be searched for CSV |
---|
| 295 | receivers. |
---|
| 296 | |
---|
| 297 | This root container has two CSV receivers. |
---|
| 298 | |
---|
| 299 | The datacenter is also an attribute of our root container. |
---|
| 300 | |
---|
| 301 | Before we can go into action, we also need an importer, that is able |
---|
| 302 | to import data into instances of MyCSVReceiver: |
---|
| 303 | |
---|
[4920] | 304 | >>> from waeup.sirp.csvfile.interfaces import ICSVFile |
---|
| 305 | >>> from waeup.sirp.interfaces import IWAeUPCSVImporter |
---|
| 306 | >>> from waeup.sirp.utils.importexport import CSVImporter |
---|
[4169] | 307 | >>> class MyCSVImporter(CSVImporter): |
---|
[4225] | 308 | ... grok.adapts(ICSVFile, MyCSVReceiver) |
---|
| 309 | ... grok.provides(IWAeUPCSVImporter) |
---|
[4169] | 310 | ... datatype = u'My Stuff' |
---|
| 311 | ... def doImport(self, filepath, clear_old_data=True, |
---|
| 312 | ... overwrite=True): |
---|
| 313 | ... print "Data imported!" |
---|
| 314 | |
---|
| 315 | We grok the components to get the importer (which is actually an |
---|
| 316 | adapter) registered with the component architechture: |
---|
| 317 | |
---|
| 318 | >>> grok.testing.grok('waeup') |
---|
| 319 | >>> grok.testing.grok_component('MyCSVImporter', MyCSVImporter) |
---|
| 320 | True |
---|
| 321 | |
---|
| 322 | Now we can create an instance of `SomeContainer`: |
---|
| 323 | |
---|
| 324 | >>> mycontainer = SomeContainer() |
---|
| 325 | |
---|
| 326 | As we are not creating real sites and the objects are 'placeless' from |
---|
| 327 | the ZODB point of view, we fake a location by telling the datacenter, |
---|
| 328 | that its parent is the container: |
---|
| 329 | |
---|
| 330 | >>> mycontainer.datacenter.__parent__ = mycontainer |
---|
| 331 | >>> datacenter = mycontainer.datacenter |
---|
| 332 | |
---|
| 333 | When a datacenter is stored in the ZODB, this step will happen |
---|
| 334 | automatically. |
---|
| 335 | |
---|
[4574] | 336 | Before we can go on, we have to set a usable path where we can store |
---|
| 337 | files without doing harm: |
---|
| 338 | |
---|
| 339 | >>> os.mkdir('filestore') |
---|
| 340 | >>> filestore = os.path.abspath('filestore') |
---|
| 341 | >>> datacenter.setStoragePath(filestore) |
---|
| 342 | [] |
---|
| 343 | |
---|
| 344 | Furthermore we must create a file for possible import, as we will get |
---|
| 345 | only importers, for which also an importable file is available: |
---|
| 346 | |
---|
| 347 | >>> import os |
---|
| 348 | >>> filepath = os.path.join(datacenter.storage, 'mydata.csv') |
---|
| 349 | >>> open(filepath, 'wb').write("""col1,col2 |
---|
| 350 | ... 'ATerm','Something' |
---|
| 351 | ... """) |
---|
| 352 | |
---|
[4169] | 353 | The datacenter is now able to find the CSV receivers in its parents: |
---|
| 354 | |
---|
| 355 | >>> datacenter.getImporters() |
---|
| 356 | [<MyCSVImporter object at 0x...>, <MyCSVImporter object at 0x...>] |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | Imports with the WAeUP portal |
---|
| 360 | ----------------------------- |
---|
| 361 | |
---|
[4225] | 362 | The examples above looks complicated, but this is the price for |
---|
[4169] | 363 | modularity. If you create a new container type, you can define an |
---|
| 364 | importer and it will be used automatically by other components. |
---|
| 365 | |
---|
| 366 | In the WAeUP portal the only component that actually provides CSV data |
---|
| 367 | importables is the `University` object. |
---|
[4172] | 368 | |
---|
| 369 | |
---|
| 370 | Getting imports (not: importers) |
---|
| 371 | -------------------------------- |
---|
| 372 | |
---|
[4574] | 373 | We can get 'imports': |
---|
[4172] | 374 | |
---|
| 375 | >>> datacenter.getPossibleImports() |
---|
| 376 | [(<...DataCenterFile object at 0x...>, |
---|
[4176] | 377 | [(<MyCSVImporter object at 0x...>, '...'), |
---|
| 378 | (<MyCSVImporter object at 0x...>, '...')])] |
---|
[4172] | 379 | |
---|
| 380 | As we can see, an import is defined here as a tuple of a |
---|
[4174] | 381 | DataCenterFile and a list of available importers with an associated |
---|
| 382 | data receiver (the thing where the data should go to). |
---|
[4172] | 383 | |
---|
[4176] | 384 | The data receiver is given as an ZODB object id (if the data receiver |
---|
| 385 | is persistent) or a simple id (if it is not). |
---|
| 386 | |
---|
[4172] | 387 | Clean up: |
---|
| 388 | |
---|
[4574] | 389 | >>> import shutil |
---|
| 390 | >>> shutil.rmtree(filestore) |
---|
[4185] | 391 | |
---|
| 392 | |
---|
| 393 | Data center helpers |
---|
| 394 | =================== |
---|
| 395 | |
---|
| 396 | Data centers provide several helper methods to make their usage more |
---|
| 397 | convenient. |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | Receivers and receiver ids |
---|
| 401 | -------------------------- |
---|
| 402 | |
---|
| 403 | As already mentioned above, imports are defined as triples containing |
---|
| 404 | |
---|
| 405 | * a file to import, |
---|
| 406 | |
---|
| 407 | * an importer to do the import and |
---|
| 408 | |
---|
| 409 | * an object, which should be updated by the data file. |
---|
| 410 | |
---|
| 411 | The latter normally is some kind of container, like a faculty |
---|
| 412 | container or similar. This is what we call a ``receiver`` as it |
---|
| 413 | receives the data from the file via the importer. |
---|
| 414 | |
---|
| 415 | The datacenter finds receivers by looking up its parents for a |
---|
| 416 | component, that implements `ICSVDataReceivers` and scanning that |
---|
| 417 | component for attributes, that can be adapted to `ICSVImporter`. |
---|
| 418 | |
---|
| 419 | I.e., once found an `ICSVDataReceiver` parent, the datacenter gets all |
---|
| 420 | importers that can be applied to attributes of this component. For |
---|
| 421 | each attribute there can be at most one importer. |
---|
| 422 | |
---|
| 423 | When building the importer list for a certain file, we also check, |
---|
| 424 | that the headers of the file comply with what the respective importers |
---|
| 425 | expect. So, if a file contains broken headers, the file won't be |
---|
| 426 | offered for import at all. |
---|
| 427 | |
---|
| 428 | The contexts of the found importers then build our list of available |
---|
| 429 | receivers. This means also, that for each receiver provided by the |
---|
| 430 | datacenter, there is also an importer available. |
---|
| 431 | |
---|
| 432 | If for a potential receiver no importer can be found, this receiver |
---|
| 433 | will be skipped. |
---|
| 434 | |
---|
| 435 | As one type of importer might be able to serve several receivers, we |
---|
| 436 | also have to provide a unique id for each receiver. This is, where |
---|
| 437 | ``receiver ids`` come into play. |
---|
| 438 | |
---|
| 439 | Receiver ids of objects are determined as |
---|
| 440 | |
---|
| 441 | * the ZODB oid of the object if the object is persistent |
---|
| 442 | |
---|
| 443 | * the result of id(obj) otherwise. |
---|
| 444 | |
---|
| 445 | The value won this way is a long integer which we turn into a |
---|
| 446 | string. If the value was get from the ZODB oid, we also prepend it |
---|
| 447 | with a ``z`` to avoid any clash with non-ZODB objects (they might |
---|
| 448 | deliver the same id, although this is *very* unlikely). |
---|