[4921] | 1 | :mod:`waeup.sirp.utils.batching` -- Batch processing |
---|
| 2 | **************************************************** |
---|
[4837] | 3 | |
---|
| 4 | Batch processing is much more than pure data import. |
---|
| 5 | |
---|
| 6 | :test-layer: functional |
---|
| 7 | |
---|
| 8 | Overview |
---|
| 9 | ======== |
---|
| 10 | |
---|
| 11 | Basically, it means processing CSV files in order to mass-create, |
---|
| 12 | mass-remove, or mass-update data. |
---|
| 13 | |
---|
[4847] | 14 | So you can feed CSV files to importers or processors, that are part of |
---|
| 15 | the batch-processing mechanism. |
---|
[4837] | 16 | |
---|
[4847] | 17 | Importers/Processors |
---|
| 18 | -------------------- |
---|
[4837] | 19 | |
---|
[4847] | 20 | Each CSV file processor |
---|
[4837] | 21 | |
---|
| 22 | * accepts a single data type identified by an interface. |
---|
| 23 | |
---|
| 24 | * knows about the places inside a site (University) where to store, |
---|
| 25 | remove or update the data. |
---|
| 26 | |
---|
| 27 | * can check headers before processing data. |
---|
| 28 | |
---|
| 29 | * supports the mode 'create', 'update', 'remove'. |
---|
| 30 | |
---|
[4903] | 31 | * creates log entries (optional) |
---|
[4837] | 32 | |
---|
[4903] | 33 | * creates csv files containing successful and not-successful processed |
---|
| 34 | data respectively. |
---|
| 35 | |
---|
[4837] | 36 | Output |
---|
| 37 | ------ |
---|
| 38 | |
---|
[4903] | 39 | The results of processing are written to loggers, if a logger was |
---|
| 40 | given. Beside this new CSV files are created during processing: |
---|
[4837] | 41 | |
---|
[4903] | 42 | * a pending CSV file, containing datasets that could not be processed |
---|
[4837] | 43 | |
---|
[4903] | 44 | * a finished CSV file, containing datasets successfully processed. |
---|
| 45 | |
---|
| 46 | The pending file is not created if everything works fine. The |
---|
| 47 | respective path returned in that case is ``None``. |
---|
| 48 | |
---|
| 49 | The pending file (if created) is a CSV file that contains the failed |
---|
| 50 | rows appended by a column ``--ERRROR--`` in which the reasons for |
---|
| 51 | processing failures are listed. |
---|
| 52 | |
---|
| 53 | The complete paths of these files are returned. They will be in a |
---|
| 54 | temporary directory created only for this purpose. It is the caller's |
---|
| 55 | responsibility to remove the temporay directories afterwards (the |
---|
| 56 | datacenters distProcessedFiles() method takes care for that). |
---|
| 57 | |
---|
[4837] | 58 | It looks like this:: |
---|
| 59 | |
---|
| 60 | -----+ +---------+ |
---|
| 61 | / | | | +------+ |
---|
| 62 | | .csv +----->|Batch- | | | |
---|
| 63 | | | |processor+----changes-->| ZODB | |
---|
| 64 | | +------+ | | | | |
---|
| 65 | +--| | | + +------+ |
---|
| 66 | | Mode +-->| | -------+ |
---|
| 67 | | | | +----outputs-+-> / | |
---|
[4903] | 68 | | +----+->+---------+ | |.pending| |
---|
| 69 | +--|Log | ^ | | | |
---|
| 70 | +----+ | | +--------+ |
---|
[4837] | 71 | +-----++ v |
---|
[4903] | 72 | |Inter-| ----------+ |
---|
| 73 | |face | / | |
---|
| 74 | +------+ | .finished | |
---|
| 75 | | | |
---|
| 76 | +-----------+ |
---|
[4837] | 77 | |
---|
| 78 | |
---|
| 79 | Creating a batch processor |
---|
| 80 | ========================== |
---|
| 81 | |
---|
| 82 | We create an own batch processor for an own datatype. This datatype |
---|
| 83 | must be based on an interface that the batcher can use for converting |
---|
| 84 | data. |
---|
| 85 | |
---|
| 86 | Founding Stoneville |
---|
| 87 | ------------------- |
---|
| 88 | |
---|
| 89 | We start with the interface: |
---|
| 90 | |
---|
| 91 | >>> from zope.interface import Interface |
---|
| 92 | >>> from zope import schema |
---|
| 93 | >>> class ICave(Interface): |
---|
| 94 | ... """A cave.""" |
---|
| 95 | ... name = schema.TextLine( |
---|
| 96 | ... title = u'Cave name', |
---|
| 97 | ... default = u'Unnamed', |
---|
| 98 | ... required = True) |
---|
| 99 | ... dinoports = schema.Int( |
---|
| 100 | ... title = u'Number of DinoPorts (tm)', |
---|
| 101 | ... required = False, |
---|
| 102 | ... default = 1) |
---|
| 103 | ... owner = schema.TextLine( |
---|
| 104 | ... title = u'Owner name', |
---|
| 105 | ... required = True, |
---|
| 106 | ... missing_value = 'Fred Estates Inc.') |
---|
[4871] | 107 | ... taxpayer = schema.Bool( |
---|
| 108 | ... title = u'Payes taxes', |
---|
| 109 | ... required = True, |
---|
| 110 | ... default = False) |
---|
[4837] | 111 | |
---|
| 112 | Now a class that implements this interface: |
---|
| 113 | |
---|
| 114 | >>> import grok |
---|
| 115 | >>> class Cave(object): |
---|
| 116 | ... grok.implements(ICave) |
---|
| 117 | ... def __init__(self, name=u'Unnamed', dinoports=2, |
---|
[4871] | 118 | ... owner='Fred Estates Inc.', taxpayer=False): |
---|
[4837] | 119 | ... self.name = name |
---|
| 120 | ... self.dinoports = 2 |
---|
| 121 | ... self.owner = owner |
---|
[4871] | 122 | ... self.taxpayer = taxpayer |
---|
[4837] | 123 | |
---|
| 124 | We also provide a factory for caves. Strictly speaking, this not |
---|
| 125 | necessary but makes the batch processor we create afterwards, better |
---|
| 126 | understandable. |
---|
| 127 | |
---|
| 128 | >>> from zope.component import getGlobalSiteManager |
---|
| 129 | >>> from zope.component.factory import Factory |
---|
| 130 | >>> from zope.component.interfaces import IFactory |
---|
| 131 | >>> gsm = getGlobalSiteManager() |
---|
| 132 | >>> cave_maker = Factory(Cave, 'A cave', 'Buy caves here!') |
---|
| 133 | >>> gsm.registerUtility(cave_maker, IFactory, 'Lovely Cave') |
---|
| 134 | |
---|
| 135 | Now we can create caves using a factory: |
---|
| 136 | |
---|
| 137 | >>> from zope.component import createObject |
---|
| 138 | >>> createObject('Lovely Cave') |
---|
| 139 | <Cave object at 0x...> |
---|
| 140 | |
---|
| 141 | This is nice, but we still lack a place, where we can place all the |
---|
| 142 | lovely caves we want to sell. |
---|
| 143 | |
---|
| 144 | Furthermore, as a replacement for a real site, we define a place where |
---|
| 145 | all caves can be stored: Stoneville! This is a lovely place for |
---|
| 146 | upperclass cavemen (which are the only ones that can afford more than |
---|
| 147 | one dinoport). |
---|
| 148 | |
---|
| 149 | We found Stoneville: |
---|
| 150 | |
---|
| 151 | >>> stoneville = dict() |
---|
| 152 | |
---|
| 153 | Everything in place. |
---|
| 154 | |
---|
| 155 | Now, to improve local health conditions, imagine we want to populate |
---|
| 156 | Stoneville with lots of new happy dino-hunting natives that slept on |
---|
| 157 | the bare ground in former times and had no idea of |
---|
| 158 | bathrooms. Disgusting, isn't it? |
---|
| 159 | |
---|
| 160 | Lots of cavemen need lots of caves. |
---|
| 161 | |
---|
| 162 | Of course we can do something like: |
---|
| 163 | |
---|
| 164 | >>> cave1 = createObject('Lovely Cave') |
---|
| 165 | >>> cave1.name = "Fred's home" |
---|
| 166 | >>> cave1.owner = "Fred" |
---|
| 167 | >>> stoneville[cave1.name] = cave1 |
---|
| 168 | |
---|
| 169 | and Stoneville has exactly |
---|
| 170 | |
---|
| 171 | >>> len(stoneville) |
---|
| 172 | 1 |
---|
| 173 | |
---|
| 174 | inhabitant. But we don't want to do this for hundreds or thousands of |
---|
| 175 | citizens-to-be, do we? |
---|
| 176 | |
---|
| 177 | It is much easier to create a simple CSV list, where we put in all the |
---|
| 178 | data and let a batch processor do the job. |
---|
| 179 | |
---|
| 180 | The list is already here: |
---|
| 181 | |
---|
| 182 | >>> open('newcomers.csv', 'wb').write( |
---|
[4871] | 183 | ... """name,dinoports,owner,taxpayer |
---|
| 184 | ... Barneys Home,2,Barney,1 |
---|
| 185 | ... Wilmas Asylum,1,Wilma,1 |
---|
| 186 | ... Freds Dinoburgers,10,Fred,0 |
---|
| 187 | ... Joeys Drive-in,110,Joey,0 |
---|
[4837] | 188 | ... """) |
---|
| 189 | |
---|
| 190 | All we need, is a batch processor now. |
---|
| 191 | |
---|
[4921] | 192 | >>> from waeup.sirp.utils.batching import BatchProcessor |
---|
[4837] | 193 | >>> class CaveProcessor(BatchProcessor): |
---|
| 194 | ... util_name = 'caveprocessor' |
---|
| 195 | ... grok.name(util_name) |
---|
| 196 | ... name = 'Cave Processor' |
---|
| 197 | ... iface = ICave |
---|
| 198 | ... location_fields = ['name'] |
---|
| 199 | ... factory_name = 'Lovely Cave' |
---|
| 200 | ... |
---|
| 201 | ... def parentsExist(self, row, site): |
---|
| 202 | ... return True |
---|
| 203 | ... |
---|
| 204 | ... def getParent(self, row, site): |
---|
| 205 | ... return stoneville |
---|
| 206 | ... |
---|
| 207 | ... def entryExists(self, row, site): |
---|
| 208 | ... return row['name'] in stoneville.keys() |
---|
| 209 | ... |
---|
| 210 | ... def getEntry(self, row, site): |
---|
| 211 | ... if not self.entryExists(row, site): |
---|
| 212 | ... return None |
---|
| 213 | ... return stoneville[row['name']] |
---|
| 214 | ... |
---|
| 215 | ... def delEntry(self, row, site): |
---|
| 216 | ... del stoneville[row['name']] |
---|
| 217 | ... |
---|
| 218 | ... def addEntry(self, obj, row, site): |
---|
| 219 | ... stoneville[row['name']] = obj |
---|
| 220 | ... |
---|
| 221 | ... def updateEntry(self, obj, row, site): |
---|
[4985] | 222 | ... # This is not strictly necessary, as the default |
---|
| 223 | ... # updateEntry method does exactly the same |
---|
[4837] | 224 | ... for key, value in row.items(): |
---|
| 225 | ... setattr(obj, key, value) |
---|
| 226 | |
---|
[4886] | 227 | If we also want the results being logged, we must provide a logger |
---|
| 228 | (this is optional): |
---|
| 229 | |
---|
| 230 | >>> import logging |
---|
| 231 | >>> logger = logging.getLogger('stoneville') |
---|
| 232 | >>> logger.setLevel(logging.DEBUG) |
---|
| 233 | >>> logger.propagate = False |
---|
| 234 | >>> handler = logging.FileHandler('stoneville.log', 'w') |
---|
| 235 | >>> logger.addHandler(handler) |
---|
| 236 | |
---|
[4837] | 237 | Create the fellows: |
---|
| 238 | |
---|
| 239 | >>> processor = CaveProcessor() |
---|
[4902] | 240 | >>> result = processor.doImport('newcomers.csv', |
---|
[4871] | 241 | ... ['name', 'dinoports', 'owner', 'taxpayer'], |
---|
[4886] | 242 | ... mode='create', user='Bob', logger=logger) |
---|
[4902] | 243 | >>> result |
---|
[4895] | 244 | (4, 0, '/.../newcomers.finished.csv', None) |
---|
[4837] | 245 | |
---|
| 246 | The result means: four entries were processed and no warnings |
---|
[4895] | 247 | occured. Furthermore we get filepath to a CSV file with successfully |
---|
| 248 | processed entries and a filepath to a CSV file with erraneous entries. |
---|
| 249 | As everything went well, the latter is ``None``. Let's check: |
---|
[4837] | 250 | |
---|
| 251 | >>> sorted(stoneville.keys()) |
---|
| 252 | [u'Barneys Home', ..., u'Wilmas Asylum'] |
---|
| 253 | |
---|
| 254 | The values of the Cave instances have correct type: |
---|
| 255 | |
---|
| 256 | >>> barney = stoneville['Barneys Home'] |
---|
| 257 | >>> barney.dinoports |
---|
| 258 | 2 |
---|
| 259 | |
---|
| 260 | which is a number, not a string. |
---|
| 261 | |
---|
| 262 | Apparently, when calling the processor, we gave some more info than |
---|
| 263 | only the CSV filepath. What does it all mean? |
---|
| 264 | |
---|
| 265 | While the first argument is the path to the CSV file, we also have to |
---|
| 266 | give an ordered list of headernames. These replace the header field |
---|
| 267 | names that are actually in the file. This way we can override faulty |
---|
| 268 | headers. |
---|
| 269 | |
---|
| 270 | The ``mode`` paramter tells what kind of operation we want to perform: |
---|
| 271 | ``create``, ``update``, or ``remove`` data. |
---|
| 272 | |
---|
| 273 | The ``user`` parameter finally is optional and only used for logging. |
---|
| 274 | |
---|
[4886] | 275 | We can, by the way, see the results of our run in a logfile if we |
---|
| 276 | provided a logger during the call: |
---|
[4837] | 277 | |
---|
[4886] | 278 | >>> print open('stoneville.log').read() |
---|
| 279 | -------------------- |
---|
| 280 | Bob: Batch processing finished: OK |
---|
| 281 | Bob: Source: newcomers.csv |
---|
| 282 | Bob: Mode: create |
---|
| 283 | Bob: User: Bob |
---|
| 284 | Bob: Processing time: ... s (... s/item) |
---|
| 285 | Bob: Processed: 4 lines (4 successful/ 0 failed) |
---|
| 286 | -------------------- |
---|
[4837] | 287 | |
---|
[4902] | 288 | We cleanup the temporay dir created by doImport(): |
---|
| 289 | |
---|
| 290 | >>> import shutil |
---|
| 291 | >>> import os |
---|
| 292 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 293 | |
---|
[4837] | 294 | As we can see, the processing was successful. Otherwise, all problems |
---|
| 295 | could be read here as we can see, if we do the same operation again: |
---|
| 296 | |
---|
[4902] | 297 | >>> result = processor.doImport('newcomers.csv', |
---|
[4871] | 298 | ... ['name', 'dinoports', 'owner', 'taxpayer'], |
---|
[4886] | 299 | ... mode='create', user='Bob', logger=logger) |
---|
[4902] | 300 | >>> result |
---|
[4895] | 301 | (4, 4, '/.../newcomers.finished.csv', '/.../newcomers.pending.csv') |
---|
[4837] | 302 | |
---|
[4895] | 303 | This time we also get a path to a .pending file. |
---|
| 304 | |
---|
[4837] | 305 | The log file will tell us this in more detail: |
---|
| 306 | |
---|
[4886] | 307 | >>> print open('stoneville.log').read() |
---|
| 308 | -------------------- |
---|
| 309 | ... |
---|
| 310 | -------------------- |
---|
| 311 | Bob: Batch processing finished: FAILED |
---|
| 312 | Bob: Source: newcomers.csv |
---|
| 313 | Bob: Mode: create |
---|
| 314 | Bob: User: Bob |
---|
[4895] | 315 | Bob: Failed datasets: newcomers.pending.csv |
---|
[4886] | 316 | Bob: Processing time: ... s (... s/item) |
---|
| 317 | Bob: Processed: 4 lines (0 successful/ 4 failed) |
---|
| 318 | -------------------- |
---|
[4837] | 319 | |
---|
| 320 | This time a new file was created, which keeps all the rows we could not |
---|
[4877] | 321 | process and an additional column with error messages: |
---|
[4837] | 322 | |
---|
[4902] | 323 | >>> print open(result[3]).read() |
---|
[4877] | 324 | owner,name,taxpayer,dinoports,--ERRORS-- |
---|
[6244] | 325 | Barney,Barneys Home,1,2,This object already exists in the same container. Skipping. |
---|
| 326 | Wilma,Wilmas Asylum,1,1,This object already exists in the same container. Skipping. |
---|
| 327 | Fred,Freds Dinoburgers,0,10,This object already exists in the same container. Skipping. |
---|
| 328 | Joey,Joeys Drive-in,0,110,This object already exists in the same container. Skipping. |
---|
[4837] | 329 | |
---|
| 330 | This way we can correct the faulty entries and afterwards retry without |
---|
| 331 | having the already processed rows in the way. |
---|
| 332 | |
---|
[4871] | 333 | We also notice, that the values of the taxpayer column are returned as |
---|
| 334 | in the input file. There we wrote '1' for ``True`` and '0' for |
---|
| 335 | ``False`` (which is accepted by the converters). |
---|
[4837] | 336 | |
---|
[4902] | 337 | Clean up: |
---|
[4871] | 338 | |
---|
[4902] | 339 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 340 | |
---|
[4912] | 341 | |
---|
| 342 | We can also tell to ignore some cols from input by passing |
---|
| 343 | ``--IGNORE--`` as col name: |
---|
| 344 | |
---|
| 345 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 346 | ... '--IGNORE--', '--IGNORE--'], |
---|
| 347 | ... mode='update', user='Bob') |
---|
| 348 | >>> result |
---|
| 349 | (4, 0, '...', None) |
---|
| 350 | |
---|
| 351 | Clean up: |
---|
| 352 | |
---|
| 353 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 354 | |
---|
| 355 | If something goes wrong during processing, the respective --IGNORE-- |
---|
| 356 | cols will be populated correctly in the resulting pending file: |
---|
| 357 | |
---|
| 358 | >>> result = processor.doImport('newcomers.csv', ['name', 'dinoports', |
---|
| 359 | ... '--IGNORE--', '--IGNORE--'], |
---|
| 360 | ... mode='create', user='Bob') |
---|
| 361 | >>> result |
---|
| 362 | (4, 4, '...', '...') |
---|
| 363 | |
---|
| 364 | >>> print open(result[3], 'rb').read() |
---|
| 365 | --IGNORE--,name,--IGNORE--,dinoports,--ERRORS-- |
---|
[6244] | 366 | Barney,Barneys Home,1,2,This object already exists in the same container. Skipping. |
---|
| 367 | Wilma,Wilmas Asylum,1,1,This object already exists in the same container. Skipping. |
---|
| 368 | Fred,Freds Dinoburgers,0,10,This object already exists in the same container. Skipping. |
---|
| 369 | Joey,Joeys Drive-in,0,110,This object already exists in the same container. Skipping. |
---|
[4912] | 370 | |
---|
| 371 | The first ignored column ('owner') provides different contents than |
---|
| 372 | the second one ('taxpayer'). |
---|
| 373 | |
---|
| 374 | Clean up: |
---|
| 375 | |
---|
| 376 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 377 | |
---|
| 378 | |
---|
| 379 | |
---|
| 380 | |
---|
[4837] | 381 | Updating entries |
---|
| 382 | ---------------- |
---|
| 383 | |
---|
| 384 | To update entries, we just call the batchprocessor in a different |
---|
| 385 | mode: |
---|
| 386 | |
---|
[4902] | 387 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 388 | ... 'dinoports', 'owner'], |
---|
[4837] | 389 | ... mode='update', user='Bob') |
---|
[4902] | 390 | >>> result |
---|
[4895] | 391 | (4, 0, '...', None) |
---|
[4837] | 392 | |
---|
[4879] | 393 | Now we want to tell, that Wilma got an extra port for her second dino: |
---|
[4837] | 394 | |
---|
| 395 | >>> open('newcomers.csv', 'wb').write( |
---|
| 396 | ... """name,dinoports,owner |
---|
| 397 | ... Wilmas Asylum,2,Wilma |
---|
| 398 | ... """) |
---|
| 399 | |
---|
| 400 | >>> wilma = stoneville['Wilmas Asylum'] |
---|
| 401 | >>> wilma.dinoports |
---|
| 402 | 1 |
---|
| 403 | |
---|
[4902] | 404 | Clean up: |
---|
| 405 | |
---|
| 406 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 407 | |
---|
| 408 | |
---|
[4837] | 409 | We start the processor: |
---|
| 410 | |
---|
[4902] | 411 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 412 | ... 'dinoports', 'owner'], mode='update', user='Bob') |
---|
| 413 | >>> result |
---|
[4895] | 414 | (1, 0, '...', None) |
---|
[4837] | 415 | |
---|
| 416 | >>> wilma = stoneville['Wilmas Asylum'] |
---|
| 417 | >>> wilma.dinoports |
---|
| 418 | 2 |
---|
| 419 | |
---|
| 420 | Wilma's number of dinoports raised. |
---|
| 421 | |
---|
[4902] | 422 | Clean up: |
---|
| 423 | |
---|
| 424 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 425 | |
---|
| 426 | |
---|
[4837] | 427 | If we try to update an unexisting entry, an error occurs: |
---|
| 428 | |
---|
| 429 | >>> open('newcomers.csv', 'wb').write( |
---|
| 430 | ... """name,dinoports,owner |
---|
| 431 | ... NOT-WILMAS-ASYLUM,2,Wilma |
---|
| 432 | ... """) |
---|
| 433 | |
---|
[4902] | 434 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 435 | ... 'dinoports', 'owner'], |
---|
[4837] | 436 | ... mode='update', user='Bob') |
---|
[4902] | 437 | >>> result |
---|
[4895] | 438 | (1, 1, '/.../newcomers.finished.csv', '/.../newcomers.pending.csv') |
---|
[4902] | 439 | |
---|
| 440 | Clean up: |
---|
| 441 | |
---|
| 442 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 443 | |
---|
[4837] | 444 | |
---|
| 445 | Also invalid values will be spotted: |
---|
| 446 | |
---|
| 447 | >>> open('newcomers.csv', 'wb').write( |
---|
| 448 | ... """name,dinoports,owner |
---|
| 449 | ... Wilmas Asylum,NOT-A-NUMBER,Wilma |
---|
| 450 | ... """) |
---|
| 451 | |
---|
[4902] | 452 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 453 | ... 'dinoports', 'owner'], |
---|
[4837] | 454 | ... mode='update', user='Bob') |
---|
[4902] | 455 | >>> result |
---|
[4895] | 456 | (1, 1, '...', '...') |
---|
[4837] | 457 | |
---|
[4902] | 458 | Clean up: |
---|
| 459 | |
---|
| 460 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 461 | |
---|
| 462 | |
---|
[4837] | 463 | We can also update only some cols, leaving some out. We skip the |
---|
| 464 | 'dinoports' column in the next run: |
---|
| 465 | |
---|
| 466 | >>> open('newcomers.csv', 'wb').write( |
---|
| 467 | ... """name,owner |
---|
| 468 | ... Wilmas Asylum,Barney |
---|
| 469 | ... """) |
---|
| 470 | |
---|
[4902] | 471 | >>> result = processor.doImport('newcomers.csv', ['name', 'owner'], |
---|
| 472 | ... mode='update', user='Bob') |
---|
| 473 | >>> result |
---|
[4895] | 474 | (1, 0, '...', None) |
---|
[4837] | 475 | |
---|
| 476 | >>> wilma.owner |
---|
| 477 | u'Barney' |
---|
| 478 | |
---|
[4902] | 479 | Clean up: |
---|
| 480 | |
---|
| 481 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 482 | |
---|
| 483 | |
---|
[4837] | 484 | We can however, not leave out the 'location field' ('name' in our |
---|
| 485 | case), as this one tells us which entry to update: |
---|
| 486 | |
---|
| 487 | >>> open('newcomers.csv', 'wb').write( |
---|
| 488 | ... """name,dinoports,owner |
---|
| 489 | ... 2,Wilma |
---|
| 490 | ... """) |
---|
| 491 | |
---|
| 492 | >>> processor.doImport('newcomers.csv', ['dinoports', 'owner'], |
---|
| 493 | ... mode='update', user='Bob') |
---|
| 494 | Traceback (most recent call last): |
---|
| 495 | ... |
---|
| 496 | FatalCSVError: Need at least columns 'name' for import! |
---|
| 497 | |
---|
| 498 | This time we get even an exception! |
---|
| 499 | |
---|
| 500 | We can tell to set dinoports to ``None`` although this is not a |
---|
| 501 | number, as we declared the field not required in the interface: |
---|
| 502 | |
---|
| 503 | >>> open('newcomers.csv', 'wb').write( |
---|
| 504 | ... """name,dinoports,owner |
---|
| 505 | ... "Wilmas Asylum",,"Wilma" |
---|
| 506 | ... """) |
---|
| 507 | |
---|
[4902] | 508 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 509 | ... 'dinoports', 'owner'], |
---|
[4837] | 510 | ... mode='update', user='Bob') |
---|
[4902] | 511 | >>> result |
---|
[4895] | 512 | (1, 0, '...', None) |
---|
[4837] | 513 | |
---|
| 514 | >>> wilma.dinoports is None |
---|
| 515 | True |
---|
| 516 | |
---|
[4902] | 517 | Clean up: |
---|
| 518 | |
---|
| 519 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 520 | |
---|
[4837] | 521 | Generally, empty strings are considered as ``None``: |
---|
| 522 | |
---|
| 523 | >>> open('newcomers.csv', 'wb').write( |
---|
| 524 | ... """name,dinoports,owner |
---|
| 525 | ... "Wilmas Asylum","","Wilma" |
---|
| 526 | ... """) |
---|
| 527 | |
---|
[4902] | 528 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 529 | ... 'dinoports', 'owner'], |
---|
[4837] | 530 | ... mode='update', user='Bob') |
---|
[4902] | 531 | >>> result |
---|
[4895] | 532 | (1, 0, '...', None) |
---|
[4837] | 533 | |
---|
| 534 | >>> wilma.dinoports is None |
---|
| 535 | True |
---|
| 536 | |
---|
[4902] | 537 | Clean up: |
---|
| 538 | |
---|
| 539 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 540 | |
---|
| 541 | |
---|
[4837] | 542 | Removing entries |
---|
| 543 | ---------------- |
---|
| 544 | |
---|
| 545 | In 'remove' mode we can delete entries. Here validity of values in |
---|
| 546 | non-location fields doesn't matter because those fields are ignored. |
---|
| 547 | |
---|
| 548 | >>> open('newcomers.csv', 'wb').write( |
---|
| 549 | ... """name,dinoports,owner |
---|
| 550 | ... "Wilmas Asylum","ILLEGAL-NUMBER","" |
---|
| 551 | ... """) |
---|
| 552 | |
---|
[4902] | 553 | >>> result = processor.doImport('newcomers.csv', ['name', |
---|
| 554 | ... 'dinoports', 'owner'], |
---|
[4837] | 555 | ... mode='remove', user='Bob') |
---|
[4902] | 556 | >>> result |
---|
[4895] | 557 | (1, 0, '...', None) |
---|
[4837] | 558 | |
---|
| 559 | >>> sorted(stoneville.keys()) |
---|
| 560 | [u'Barneys Home', "Fred's home", u'Freds Dinoburgers', u'Joeys Drive-in'] |
---|
| 561 | |
---|
| 562 | Oops! Wilma is gone. |
---|
| 563 | |
---|
[4902] | 564 | Clean up: |
---|
[4837] | 565 | |
---|
[4902] | 566 | >>> shutil.rmtree(os.path.dirname(result[2])) |
---|
| 567 | |
---|
| 568 | |
---|
[4837] | 569 | Clean up: |
---|
| 570 | |
---|
| 571 | >>> import os |
---|
| 572 | >>> os.unlink('newcomers.csv') |
---|
[4886] | 573 | >>> os.unlink('stoneville.log') |
---|